With the popularity of Artificial intelligence (AI) spreading like wildfire, we have compiled a list of the top 15 Hadoop Ecosystem components that are sure to be worth mentioning.
Hadoop is an open source framework that is used for storing and processing big data. It is a distributed system that runs on a cluster of commodity hardware. Hadoop has many components, which can be divided into two categories: core components and ecosystem components.
The core components of Hadoop are the HDFS (Hadoop Distributed File System) and the MapReduce programming model. The HDFS is a scalable, fault-tolerant file system that is used to store big data. MapReduce is a programming model that is used to process big data in a parallel and distributed way.
The ecosystem components of Hadoop include tools and libraries that are used to interact with the Hadoop framework. Some of the most popular ecosystem components are Hive, Pig, and Spark. Hive is a data warehouse tool that is used to query and analyze big data. Pig is a data processing language that is used to write MapReduce programs. Spark is an in-memory computing platform that is used to process big data in real-time.
In this article, we will map the top 15 Hadoop ecosystem components in 2022 and discuss their importance.
The Hadoop Distributed File System (HDFS) is the core component of the Hadoop ecosystem. It is a distributed file system that helps to store and process large amounts of data. HDFS is designed to be scalable and fault-tolerant. It is also very efficient in terms of storage and bandwidth usage.
HDFS is used by many other components in the Hadoop ecosystem, such as MapReduce, Hive, and Pig. It is also used by some non-Hadoop components, such as Apache Spark. HDFS is a key component of the Hadoop ecosystem and helps to make it so powerful and efficient.
MapReduce is a processing technique and programming model for handling large data sets. It is a framework for writing applications that process large amounts of data in parallel. MapReduce was originally developed by Google. It is now an open-source project that is maintained by the Apache Software Foundation.
MapReduce has two main components:
MapReduce is designed to scale up to very large data sets. It can be run on a single server or on a cluster of thousands of servers.
MapReduce is a popular choice for big data applications because it is highly efficient and easy to use.
Apache Spark is an open source big data processing framework. It is one of the most popular Hadoop ecosystem components because it can process data much faster than other Hadoop components. Apache Spark can be used for a variety of tasks such as batch processing, real-time stream processing, machine learning, and SQL.
Some Features of Apache Spark are:
Hive is a data warehouse infrastructure built on top of Hadoop for providing data summarization, query, and analysis. It also supports additional features like indexing and partitioning to improve performance. Hive supports a SQL-like language called HiveQL. HiveQL is used for querying and managing data stored in relational tables and views.
You can use Hive to query the data stored in Hadoop, whether it's HDFS, LDB (HBase), or even a database like MySQL. You can also create tables using standard SQL syntax against HBase and other NoSQL databases.
The main components of the HIVE are:
Hive is a very flexible framework as it support multiple datastores as well as multiple programming languages for accessing data from them. Some of the common datatypes supported by Hive are INTEGER , BIG INT , TINYINT , BIGDECIMAL , FLOAT , DOUBLE , STRING, BOOLEAN and the list goes on. Hive supports many built-in functions like COUNT, SUM, AVG, MIN, MAX etc which are used for aggregating data on a per row basis.
Pig is a high-level data processing language that is part of the Hadoop ecosystem. Pig can be used to clean, transform, and aggregate data. It is similar to SQL in that it has a declarative syntax. However, Pig is designed specifically for large-scale data processing on Hadoop.
Pig is an open source project that is part of the Apache Foundation. It was originally developed by Yahoo! in 2006. Pig has since become one of the most popular data processing languages for Hadoop.
Pig can be used to perform a variety of data processing tasks. For example, it can be used to clean and transform data, perform statistical analysis, and build machine learning models. Pig can also be used to process log files, social media data, and other types of big data.
The Pig platform consists of two main components: the Pig Latin language and the Pig Runtime Engine. The Pig Latin language is used to write Pig scripts. These scripts are then executed by the Pig Runtime Engine.
YARN is one of the top Hadoop ecosystem components. It is a resource manager that helps manage resources in a Hadoop cluster. YARN is responsible for scheduling tasks and allocating resources to them. It has a central component called the Resource Manager. The Resource Manager is responsible for managing resources in the cluster. YARN also has a Node Manager component that runs on each node in the cluster. The Node Manager is responsible for managing resources on each node.
YARN provides many benefits over the older MapReduce framework. It is more scalable and can handle more tasks simultaneously. YARN also provides better performance and uses less memory than MapReduce.
Apache Drill is an open source SQL query engine that can handle large-scale data. It is designed to be scalable and easy to use. Drill supports a variety of data formats, including JSON, CSV, and Parquet. It can be used with Hadoop, Spark, or other big data platforms.
Main features of Apache Drill:
HBase is a column-oriented database management system that runs on top of HDFS. It is used for storing large amounts of data that need to be processed quickly. HBase is designed to provide quick access to data in HDFS. It is also used for large datasets where a system needs to ensure a high throughput and massive scalability.
HBase provides row-level access to data stored on disks. HBase is a distributed database. It can be run in a cluster of machines. HBase requires Zookeeper to coordinate the actions between the system components.
Mahout is a machine learning library that is often used in conjunction with Hadoop. It provides algorithms for clustering, classification, and recommendation. Mahout is written in Java and is open source.
Zookeeper is a critical component of the Hadoop ecosystem. It is responsible for maintaining the state of the distributed system and providing a centralized configuration service. It also helps to coordinate the activities of the various components in the system.
Without Zookeeper, it would be very difficult to manage a Hadoop cluster effectively. It ensures that the different components in the system are always in sync and that the configuration is consistent across all nodes.
Zookeeper is a highly available and scalable system that can handle large numbers of requests without any problems. It is an essential part of any Hadoop deployment.
Oozie is a workflow scheduler system for Hadoop. It is used to manage Apache Hadoop jobs. Oozie Workflow jobs are Directed Acyclic Graphs (DAGs) of actions. Oozie Coordinator jobs are recurring Oozie Workflow jobs triggered by time (frequency) and data availability.
Oozie is integrated with the Hadoop stack, with YARN as its architectural center, making it easy to include MapReduce, Pig, and Hive as part of complex data pipelines.
Oozie also supports Hbase Actions and Sqoop Actions out of the box provides developers a powerful tool to build data pipelines to ingest data from relational databases into HDFS, process it using MapReduce or Pig, and finally load it into HBase or Hive for reporting and analytics. Oozie is currently deployed in production by many companies including Twitter, LinkedIn, Adobe and Netflix. Oozie can be used in conjunction with Apache Hadoop MapReduce Framework and Apache Hive to execute complex data analysis using the most relevant tools for a given problem.
Here are some important features of “Apache Oozie”:
Sqoop is a tool that enables users to transfer data between Hadoop and relational databases. It can be used to import data from a relational database into Hadoop, or to export data from Hadoop to a relational database.
Sqoop is designed to work with large amounts of data, and it is efficient at transferring data between Hadoop and relational databases.
Flume is a tool for collecting and aggregating data from various sources. It has a simple and flexible architecture that allows for easy integration with other tools in the Hadoop ecosystem. Flume is used to collect data from log files, social media, and other sources. It can then be used to process and analyze this data.
The most common use of Flume is to move log data from servers to a Hadoop cluster.
Ambari provides an easy to use web interface for managing Hadoop clusters. It can be used to provision, monitor and manage Hadoop clusters. Ambari also provides a REST API that can be used to manage Hadoop clusters from any programming language.
Apache Solr is a powerful search engine that can be used to index and search data stored in HDFS.
Apache Solr is a highly scalable, fast and enterprise search server. It is built on top of Lucene to provide indexing and full-text search capabilities. Solr also provides advanced features such as faceted search, hit highlighting, result clustering, analytics integration and rich document handling. You can use Apache Solr instead of HBase for searching data in large HDFS datasets.
In this article, we have looked at the top Hadoop ecosystem components that are essential for every Apache Hadoop implementation. We have also briefly looked at each component's role in the Hadoop ecosystem. By understanding these components and their purpose, you will be able to select the right tools and technologies for your specific big data processing needs.
That’s a wrap!
I hope you enjoyed this article
Did you like it? Let me know in the comments below 🔥 and you can support me by buying me a coffee.
And don’t forget to sign up to our email newsletter so you can get useful content like this sent right to your inbox!
Thanks!
Faraz 😊